该算法根据文字本身的特性采用分治策略将原始问题空间划分为5个子空间,每个子空间对应一类文字样本,分别命名为Long类,Thin类,Fill类,Square-large类和 Square-small类(如下图所示),于是每个候选连通区域被划分到这5类中的一种。  text-space在每个子空间中,微软亚洲研究院团队创新地利用无歧义学习策略训练一个相应的浅层神经网络,作为该子空间的文字/非文字分类器,我们可以将该神经网络看作是一个黑盒子,在经过大量学习之后,它便能较为准确的将文字与非文字分类。  每次分类动作包括两个阶段——预剪枝(Pre-pruning)阶段和验证(Verification)阶段。在预剪枝阶段,分类器的任务是尽可能滤除无歧义的非文字候选连通区域;在验证阶段,则通过引入更多信息来消除孤立连通区域的歧义性,从而进一步滤除有歧义的非文字候选连通区域。